NuRaft: A Python Implementation of Raft

Xuangui Huang David Stalfa
June 8, 2022

1 Introduction

NuRaft is an implementation of the central components of the Raft consensus protocol. This report docu-
ments the work done in constructing NuRaft, as well as the reasoning behind several design decisions made
in the course of project.

Section [I] provides a brief overview of Raft, the functionality we chose to build on top of the Raft
protocols, and the components of Raft that were implemented in NuRaft. Section [2| describes in more
detail the functionality of our program, some technical details of the implementation, and any deviations of
NuRaft from the proposed project. Section [3] reviews some design decisions that were made in the course of
constructing the program and provides some rationale for those decisions. Finally, Section [4] describes some
of the tests that were run on NuRaft to ensure it works correctly.

Raft Overview The Raft consensus protocol is Diego Ongaro’s and John Ousterhout’s [B] attempt
at defining a more understandable alternative to Paxos. Raft, like Paxos, is a protocol for coordinating a
replicated log across many servers. A client may read or write to this log and the changes are made in
parallel across the whole set of servers. A carefully designed protocol is needed in this model due to latency
in communication, faulty servers, or a faulty network which drops messages. Therefore, these changes must
be propogated carefully in order to ensure that the logs of all servers remain consistent.

Raft’s main protocols can be understood through three basic concepts: strong leadership, randomized
leader elections, and joint consensus for membership changes. Raft uses a notion of strong leadership in log
replication and in client interaction. For log replication, the leader forces the log’s of all other servers to
match its own. For client interaction, Raft enforces that all client requests are directed to leader. Raft uses
randomized leader elections to simplify the election process. Follower servers have randomly set election
timers, which help ensure that no two servers timeout at the same time meaning that, typically, the first
server to timeout will win an election before any other servers detect a failure. Finally, membership changes
are done through a joint consensus protocol, which uses an intermediate phase in which the leader is managing
separate majorities in old and new configurations. One key aspect of the Raft membership change is that
the system remains online throughout the change. That is, the leader can continue to service client requests
throughout a membership change.

Two further parts of Raft are persistent storage and log compaction. Servers frequently save parts of
its current states to the persistent storage so that they can use this storage to restore their logs when they
recover after a crash. Log compaction in Raft is done by servers independently. To compact its log, a servers
stores in persistent memory its current state machine state along with the last log entry and the most current
configuration. The server then deletes all committed log entries.

Underlying State Machine NuRaft implements a key-value store on top of the Raft protocols. This
means that each server should hold a replicated key-value store identical to the store held on all other servers
(the Raft protocols help ensure the stores are eventually the same). A client can interact with the system
to put a key-value pair in the store or get the value from the store by a key.

Implemented Protocols NuRaft implements the log replication, leader election, persistent storage, client
interaction, and membership change protocols. For membership changes, joint consensus is used only to add
servers. For removing servers, NuRaft uses a single-server removal described in Section Persistent
storage allows for a crashed server to recover and restore its log to the last state it was in before crashing.

2 Implementation

In this section, we describe how the protocols described in Section [I| are implemented in NuRaft. In Sec-
tion [2:I] we describe the functionality of NuRaft. In Section [2.2] we describe the technical details of NuRatft.
Finally, in Section we describe the deviations in NuRaft from the project proposal.

2.1 Functionality

In this section, we describe the functionality of NuRaft. Below we list the protocols that were implemented
as well as some details of the implementations. The parenthesized name after each protocol indicates who
was responsible for implementing it.

e Log Replication (Xuangui)

The leader forces the logs’s of all followers to match its own. This is achieved through the use of an
AppendEntry message from the leader to each follower f, which allow the leader to do two things.
First, the leader learns the last entry at which the its own log matches the log of f. Second, once
the logs match up to a certain index, the leader overwrites all following indices in f’s log with the
corresponding entries in its own log.

e Leader Election (Xuangui)

Leaders maintain their position through the use of empty AppendEntry messages, which serve as
heartbeats. Each follower f holds a randomized timeout parameter t; (different for each follower)
where t; € [T,2T] and T is the minimum election timeout. If f does not receive a heartbeat within
time ¢y of the last heartbeat, then it assumes the leader has failed and starts a new election. f
starts an election by voting for itself and sending out RequestVote messages to all other servers in
the configuration. Each server can vote for at most one server in an election. If a server votes for a
candidate ¢, then the server sends ¢ a RequestVoteReply message indicating that the vote was granted.
If a candidate receives votes from a majority of servers in the configuration then it becomes the leader.
If a server does not receive enough votes and does not receive heartbeats from an elected leader, then
eventually it will restart the election after the election timer times out.

NuRaft assumes that server 0 is the leader in the first term, term 0.

e Persistent Storage (Xuangui)

Each server makes a persistent copy of its log, current term, and current vote each time before it
responses and commits. Upon recover, the server can restore its log to its state prior to crashing by
using the -r option in its startup command.

e Client Interaction (David)

— Find Leader

In NuRaft, the Client initially assumes the leader is server 0. On sending a request to a a server
s it believes is the leader, the request either (a) times out or (b) is told that s is not the leader.
In case (a), the client randomly choose server from the configuration to believe is the leader and
retries the message to that server. In case (b), the reply includes the identity of a server s believes
is the leader and the client retries the message at this server.

— Issue Get and Put Requests
The client uses a queue to store user commands, and then issues these as requests to the network.
This allows the client to receive commands faster than it can process them and submit the requests
in the order they were given to the client.

— Issue Add and Remove Requests
In NuRaft the client issues add and remove requests to the system. In this way, NuRaft combines
the role of client and system administrator. These roles could easily be separated since the code
to handle membership change requests is mostly separate from that which handles read/write
requests.
The client stores a separate queue which stores the user commands to add or remove servers and
issues these requests to the system in the order in which they were given. These requests are made
in parallel with the read/write requests, so several read/write requests could be made between
two add/remove requests.
The separate queues also means that we cannot reason about the order of read/write commands
and add/remove requests. For example, if the user begins by issueing several put commands
and then an add command, the add command may get executed before some of the put requests
because it immediately is put at the front of its queue. This behavior seems desirable in that
it mimics what would happen if there were a separate system administrator issuing membership
change independently of the client.

e Membership Changes

NuRaft supports the addition and removal of servers from the configuration. All servers added or
removed are from a pool of servers with known addresses. Specifically, NuRaft supports adding servers
with addresses wvdi-linuz-0(n).ccs.neu.edu for n = 30,...,39 from the server pool, which is set in
config.py. Any servers that are added can also be removed.

NuRaft uses different protocols for adding and removing servers: one protocol supports adding multiple
servers and the other supports removing a single server. The decision to use different protocols was
done mostly for pedagogical reasons. The protocol to add/remove multiple servers has better safety
properties, but the algorithm is slightly more complicated to impelement. The protocol to add/remove
a single server uses a simpler algorithm, but there are known bugs in the published specification which
have to be accounted for. We thought it would be helpful for us to understand both approaches to the
problem.

— Add Multiple Servers (Xuangui)
NuRaft supports adding multiple servers to the configuration without interruption in availability
of the replicated store. This is initiated with a call add (ni) (n2)... to the client, where n; is
the integer index of a server you would like to remove.
To safely add the servers without interruption in availability, NuRaft uses Raft’s joint consensus
algorithm. This algorithm runs in two phases. Suppose the configuration {a,b,c} wants to add
two servers, d and e, and so transition into the configuration {a,b,c,d,e}. In the first phase
of joint consensus, the intermediate configuration {{a,b,c},{a,b,c,d,e}} is committed. During
this period, any requests must be approved by majorities in both the old and new configurations.
Once the intermediate phase is committed, the second phase begins in which the new configuration
{a,b,c,d, e} is committed. Committing this configuration completes the membership change.

— Remove One Server (David)
NuRaft also supports removing a single server. This can be done with a call rem (n) where n is
the index of the server you would like to remove.
To safely remove the server without loss of availability, NuRaft uses a two phase process. The
first phase commits a no-op entry in the log. This ensures that the logs’ of any servers outside
the configuration are not up to date with the majority of servers in the configuration [2]. The
second phase commits the new configuration with the requested server removed.

— Ignoring Disruptive Servers (David)

NuRaft also allows for servers outside the configuration to run in and send messages without
disrupting the availability of the system. This is a desirable feature if servers are being adding
to the configuration, and is essential if servers are being removed. When adding servers, we
would like to be able to start them up and possibly set their configurations before adding them
to the configuration, but we would not want them to start broadcasting messages which interrupt
availability (e.g. by starting unnecessary elections). Similarly, when removing servers we need to
know that the removed server will not continue broadcasting to the configuration and interrupting
availability.

NuRaft is able to ignore disruptive, out-of-configuration servers by carefully timing when each
server will accept messages which request votes. Specifically, each server’s randomized election
timer has a minimum value, say t,;,. If any server receives a request vote message with time ¢y,
of the last received heartbeat, then the server rejects the request. Otherwise, the server grants
the request (assuming it meets the criteria for granting). This ensures that the only times an
out-of-configuration server is able to disrupt a healthy leader is if that leader’s heartbeats have
already been delayed by time ¢, (and so some server might already have timed out anyway).
Thus the availability of the system is unaffected.

2.2 Technical Details

NuRaft is implemented in Python 3.6 using the Asynchronous I/O (asyncio) library. We know of nine
previous implementations of Raft, only one of which uses the asyncio library [I]. We implement the commu-
nications using connectless UDP, making it compatible with asyncio, using the newly-introduced features of
futures and coroutines. Our implementation also allows for simulating dropped or delayed messages. The
client and servers run on Northeastern’s VDI’s. All addresses are of the form vdi-linux-0(n).ccs.neu.edu
with servers using addresses with n = 30,...,39 and the client using server n = 40. The client accepts
commands through standard input.

2.3 Changes from Proposal

In constructing NuRaft, there were only minor changes from the proposed project. First, since Xangui is, it
turns out, a much more experienced and faster programmer in Python than David, more of the initial server
side functionality fell to him, while David implemented the client program and the final steps (single-server
removal and ignoring disruptive servers), prepared the slides, and wrote the report. Second, because of
compatibility issues with David’s computer, it was impossible to use Docker for the project as proposed, and
so it was decided to use Northeastern’s VDI’s. Third, in the proposal, after finishing basic functionalities we
planned to implement log compaction first and then membership changes if time permits, but it turns out
that membership changes is a much more interesting functionality in Raft so we decided to invest all of our
remaining time to implement it properly.

3 Design Decisions

In this section, we describe and rationalize some of the decisions that were made in the design and imple-
mentation of NuRaft.

e Joint Consensus for Add-Only Membership Changes

In implementing the Raft joint consensus algorithm, we decided to only allow it to support adding
multiple servers to a configuration. We verified that, even in this weaker scenario, the configuration
cannot be committed directly and something like joint consensus is needed.

Consider the example given in Figure [I} where the current configuration has three servers and four
servers are added. Suppose we tried to make this configuration change directly. In this case, if the

(a) OO0

Ooon
(b) OO O

Figure 1: Old servers are shown in blue, new servers in green. In both figures, the elected leader are shown
with a heavy border. (a) shows the old (blue) configuration before the change, with the new (green) servers
waiting to be added. (b) shows the election of separate leaders after the old leader received the request to
add the new servers, and then immediately crashed.

old leader crashes, then there is no way for the other old servers to learn about the new configuration.
Since there are more added servers than old servers, both sets believe that they can attain a majority
and so each set may elect its own leader.

e Storing Client Message ID’s

The Raft specification calls for servers to store client message ID’s in the logs along with the logged
client requests. NuRaft does not have the servers store this information. Here we explain why this is
justified.

In general, it is necessary to store client message ID’s to avoid a situation in which client requests are
executed twice. Consider a state machine that stores a counter. In this case, the client may request
to increment the counter, and this request may be successfully committed. However, before the leader
can respond with success, the leader fails. Then, according to the Raft protocol, the leader will resend
the request to the new leader. If the servers are not storing the client message ID’s, then this increment
will occur twice, and the system will not behave correctly.

Our system, however, holds a key-value store. In this case, a client message can be processed many
times and the result is the same as if it were processed exactly once. Figure[2]depicts this situation. For
this reason, we do not store client message ID’s in the log, and allow client messages to be processed
many times.

e Other Design Decisions

— Put and Get Requests are Handled the Same by the Servers

The Raft specification calls for optimizing read-only (get) requests by just exchanging a single
heartbeat and then responding to the client directly rather than committing the request. Because
of our architecture, this optimization would have been nearly as costly as committing each get
request, so we opted for the conceptually simpler model where all request are handled the same
way.

— One Log Entry is Appended at a Time

The Raft specification calls for optimizing appends by appending entries in batches. We chose
not to implement this optimization to keep out code simpler.

Client Client

Success|
a—7 a—7 a—>T7 a—T7 a—7 a—T7
b—3 b—3 b—3 b—3 b—3 b—3
c—6 c—6 c—6 c—6 c—6 c—6

() (b)

Figure 2: Servers are shown along the bottom and the client at the top. A red bordered server denotes the
leader, and a dark gray server indicates that it has crashed. In (a), the client requests that (¢,6) be put
into the store. The request is granted, but the leader crashes before it can report success. In (b), the leader
re-sends its request to the new leader, and the resulting store is unchanged.

— Membership Change Requests are Made from Client

In general, membership change requests would be made from a system administrator. We chose
to merge these two roles into the client role in order to simplify testing. Section discusses the
implications of this decision in more detail.

— All Servers are Taken from a Pool of Servers with Known Addresses

NuRaft does not support using servers with arbitrary addresses. All servers used in the system
must be taken from the pool of servers described in Section This was done to simplify the
code and free us up to focus on what we saw as being the more fundamental aspects of Raft.

— Commit No-Op Log Entry Before Removing Server

Raft calls for committing a no-op log entry immediately after removing a single server. This
ensures that a majority of servers in the new configuration have more up-to-date logs than the
server that was just removed. Specifically, the problematics case occurs when several servers are
removed without any other log entries being committed in between [2]. We address this problem
by committing a no-op entry immediate before each server removal. That way, if several servers
are removed in sequence, there will still be log entries separating their logs from the majority
of remaining servers. Since only one server is being removed at a time, it can never achieve a
majority vote to be elected leader against the remaining servers.

4 Testing

Many tests were run on NuRaft to test log replication, leader election, persistent storage, putting, getting,
and adding servers. Some recorded tests are linked below with descriptions. We have many parameters in
config.py that can be changed for testing.

1. https://drive.google.com/file/d/1vwxE09CsJoMIZ-1j9xgbhNvnCINwWOIAS/view?usp=sharing

Here we test the general functionalities of the system in an integration test. We test subsequently the
cases where key-values pairs are put into the store, values are retrieved by key, accessing non-existent
keys, leaders crash, a minority of servers crash, a majority of servers crash, servers recovers, servers
are added, a much larger minority of servers crash after configuration changes. In these cases the
system remains online, available, and consistent, and the client can find the leader and interact with it.
The system blocks if a majority of servers crash, but if these servers recover then the system becomes
available again.

2. https://drive.google.com/file/d/1we4QX9g0P_KZiqyHGwliSJmmubtWnHpo/view?usp=sharing

https://drive.google.com/file/d/1vwxE09CsJoMIZ-1j9xg5hNvnCJNwOIAS/view?usp=sharing
https://drive.google.com/file/d/1we4QX9g0P_KZiqyHGwliSJmmu6tWnHpo/view?usp=sharing

In this test, we slow down joint consensus such that there is lag between commitment of the intermediate
and the new configurations. During this delay, we make several get/put requests to show that the
system remains available and consistent during the change.

3. https://drive.google.com/file/d/1PWhHiyuOt0EqQNMZirqFsyxgGTR2QwJb5/view?usp=sharing

Here we test that joint consensus requires majorities from both the old and new sets of servers. We,
again, slow down joint consensus and crash a majority of the old servers to show that, in this case, the
system blocks.

4. https://drive.google.com/file/d/1_s1ALcMnZH8yNUO2sgOOBHBhT jNwocaX/view?usp=sharing

Here, we test that candidate servers whose logs are not up-to-date cannot be elected leader. We slow
down the leader’s heartbeats to that the election timers’ constantly run out. Further, we crash server’s
strategically to ensure that each server makes one attempt to become leader. When the server with
the too short log attempts to become leader, its request vote message is rejected.

A similar test to Test [I| was run to test removing a single server and ignoring disruptive servers, but since
we completed this part of the code fairly late we did not have time run extensive tests.

References

[1] The raft consensus algorithm. https://raft.github.io/.

[2] Diego Ongaro. bug in single-server membership changes. https://groups.google.com/forum/#!msg/
raft-dev/t4xj6dJTP6E/d2D9LrWRza8J.

[3] Diego Ongaro. Consensus: Bridging Theory and Practice. PhD thesis, Stanford University, 2014. (work
in progress).

[4] Diego Ongaro and John Ousterhout. In search of an understandable consensus algorithm (extended
version), 2014. https://raft.github.io/raft.pdf.

https://drive.google.com/file/d/1PWhHiyu0tOEqNMZirqFsyxgGTR2QwJb5/view?usp=sharing
https://drive.google.com/file/d/1_slALcMnZH8yNUO2sg00BHBhTjNwocaX/view?usp=sharing
https://raft.github.io/
https://groups.google.com/forum/#!msg/raft-dev/t4xj6dJTP6E/d2D9LrWRza8J
https://groups.google.com/forum/#!msg/raft-dev/t4xj6dJTP6E/d2D9LrWRza8J
https://raft.github.io/raft.pdf

	Introduction
	Implementation
	Functionality
	Technical Details
	Changes from Proposal

	Design Decisions
	Testing

