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Raft Basics

Consensus protocol for log replication

Strong Leadership

• All instructions flow from leader to followers

Randomized Leader Elections

• Random timeouts determine when leader has failed

Joint Consensus for Membership Changes

• Intermediate phase where leader manages both old and new

configurations
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Key-Value Store

Each server holds replica of key-value store

Client can request to

• put a key-value pair in the store

• get from the store the value associated with a given key

Server 1

a � 7
b � 3
c � 6
...

Server 2

a � 7
b � 3
c � 6
...

Server 3

a � 7
b � 3
c � 6
...
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Implemented Protocols

Log Replication

Leader Election

Persistent Storage

Client Interaction

• Find leader

• Issue put/get requests

Membership Change

• Supports adding servers

to configuration

• No downtime

a � 7
b � 3

b � 1

a � 7
c � 4
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Technical Details of Implementation

Implemented in Python3.6

• Nine previous implementations of Raft in Python1

Uses Asynchronous I/O (asyncio) library

• One previous implementation in Python using asyncio2

Servers communicate using UDP

Runs on Northeastern VDI’s

Client commands issued as standard input

1https://raft.github.io/
2Ibid.
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Design Decisions



Add-Only Membership Changes

Implementation supports adding but not removing servers

Still requires non-trivial application of joint consensus

Otherwise, might end up with separate majorities and multiple leaders
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Linearizable Semantics

Correctness requires that our protocol’s semantics be linearizable.

Informally, a protocol’s semantics is linearizable if the result of the

protocol is identical to one in which each completed client request is

executed instantaneously.

In general, processing a client request twice violates linearizability.

We allow client requests to be processed multiple times. Since we

implement a key-value store, our semantics is still linearizable.
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Other Design Decisions

Handle read (get) requests the same as write (put) requests

• Raft optimizes read-only requests by exchanging heartbeats rather

than the full commit protocol

Lead server appends only a single log entry at a time

• Raft optimizes this operation by appending several entries at a time

Invoke membership changes with a call to add from the Client

• Requests are made in parallel with put/get requests

Add servers from a pool with known addresses
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Demos



Basic Functionality

Put key-value pairs into the store

Get values from the store by key

System remains available and consistent:

• the leader crashes

• any majority of servers are online

• servers are added

System is unavailable if:

• a majority of servers are offline

If system is ever unavailable, it becomes available again when enough

servers recover

https://drive.google.com/file/d/

1Fc1NDyUKlPlhp1eA9LdL2zFACjuh3_mf/view?usp=sharing
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Active Membership Change

Raft promises that the system remains available throughout a

membership change, assuming a majority of servers are online.

Here, we slow down a configuration change and make several put/get

requests to show that our implementation meets this condition.

https://drive.google.com/file/d/1we4QX9g0P_

KZiqyHGwliSJmmu6tWnHpo/view?usp=sharing
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Joint Consensus Block

Joint consensus requires that decisions made between the start and

completion of a membership change must be approved by majorities in

both the old and new configurations.

Here we simulate a majority of old servers crashing in the middle of a

membership change, and show that in this case the system blocks.

https://drive.google.com/file/d/

1PWhHiyu0tOEqNMZirqFsyxgGTR2QwJb5/view?usp=sharing
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Leader Election Constraint

Raft requires that the log of any newly elected leader contains all

committed entries from previous terms.

Here we show that if a server does not have an up-to-date log, then its

request vote messages are rejected.

https://drive.google.com/file/d/1_

slALcMnZH8yNUO2sg00BHBhTjNwocaX/view?usp=sharing
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Thank you!

Q & A
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