Time-Space Lower Bound for Parity Learning

Xuangui Huang Willy Quach

Machine Learning Project Presentation April 9th 2018

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

A secret vector
$$\mathbf{s} = (s_1, \ldots, s_n) \in \{0, 1\}^n$$
.

< □ > < □ > < □ > < □ > < □ >

A secret vector
$$\mathbf{s} = (s_1, \ldots, s_n) \in \{0, 1\}^n$$
.

・ロト ・ 日 ト ・ 目 ト ・

3

A secret vector $\mathbf{s} = (s_1, \dots, s_n) \in \{0, 1\}^n$. $\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^n x_i y_i \mod 2$ $\overbrace{\mathbf{a}, \langle \mathbf{a}, \mathbf{s} \rangle}{\mathbf{a} \leftarrow_R \{0, 1\}^n}$

A secret vector $\mathbf{s} = (s_1, \dots, s_n) \in \{0, 1\}^n$. $\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^n x_i y_i \mod 2$ $\overbrace{\mathbf{a}, \langle \mathbf{a}, \mathbf{s} \rangle}{\mathbf{a} \leftarrow_R \{0, 1\}^n}$

S

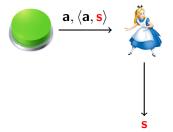
► < ∃ ►</p>

Learning Parity: Two strategies

A secret vector $\mathbf{s} = (s_1, \ldots, s_n) \in \{0, 1\}^n$.

With large memory: Gather *n* vectors **a** into an invertible **A**, \longrightarrow obtain (**A**, **A** \cdot **s**) Then use **Gaussian Elimination**:

 $\longrightarrow \sim n$ samples and n^2 memory



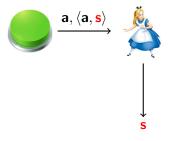
Learning Parity: Two strategies

A secret vector $\mathbf{s} = (s_1, \ldots, s_n) \in \{0, 1\}^n$.

With large memory: Gather *n* vectors **a** into an invertible **A**, \rightarrow obtain (**A**, **A** \cdot **s**) Then use **Gaussian Elimination**: $\rightarrow \sim n$ samples and n^2 memory

With a lot of samples: Wait for a sample $\mathbf{a} = (1, 0, ..., 0)$; read $s_1 = \langle \mathbf{a}, \mathbf{s} \rangle$.

 $\longrightarrow \sim n \cdot 2^n$ samples and *n* memory



Time-Memory Tradeoff for Learning Parity

• Those are the only two strategies!

Main Theorem ([Raz, FOCS'16], informal)

Any algorithm that learns parity either:

• Uses $\sim n^2$ memory,

OR

• Uses an exponential number of samples.

Time-Memory Tradeoff for Learning Parity

• Those are the only two strategies!

Main Theorem ([Raz, FOCS'16])

For all c < 1/20, there exists an $\alpha > 0$ such that any program using

- $\leq 2^{\alpha n}$ samples
- \leq cn² memory

only succeeds with probability $\leq O(2^{-\alpha n})$.

Time-Memory Tradeoff for Learning Parity

• Those are the only two strategies!

Main Theorem ([Raz, FOCS'16], informal)

Any algorithm that learns parity either:

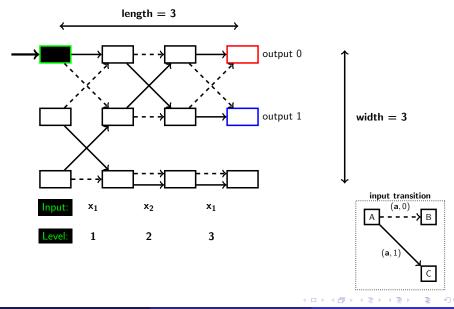
• Uses $\sim n^2$ memory,

OR

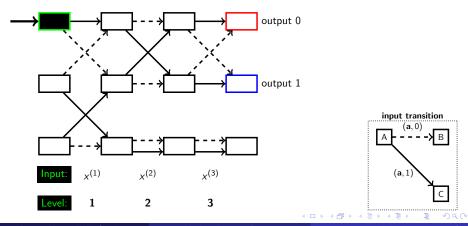
• Uses an exponential number of samples.

Proof?

Need a computational model for **bounded memory**.



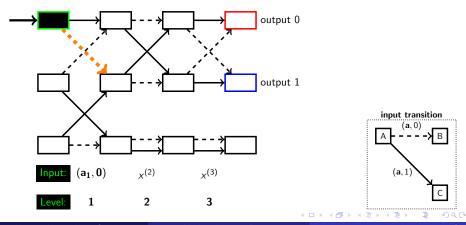
Input: $x^{(1)} = (\mathbf{a}_1, 0)$



Xuangui Huang, Willy Quach

Machine Learning Project

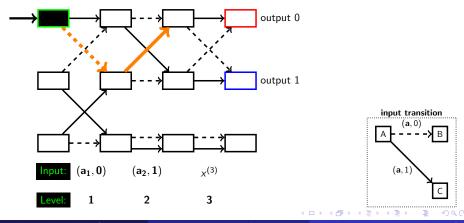
Input: $x^{(1)} = (\mathbf{a}_1, 0)$



Xuangui Huang, Willy Quach

Machine Learning Project

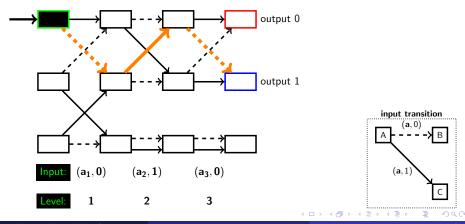
Input:
$$x^{(2)} = (\mathbf{a}_2, 1)$$



Xuangui Huang, Willy Quach

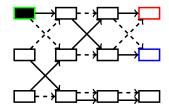
Machine Learning Project

Input:
$$x^{(3)} = (a_3, 0)$$

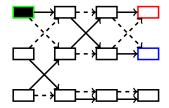


Xuangui Huang, Willy Quach

• Idea: embed structure into the computation.



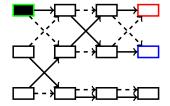
- Idea: embed structure into the computation.
- Memorize subspace where s lives in nodes.



- Idea: embed structure into the computation.
- Memorize subspace where s lives in nodes.

- Associate nodes with affine subspaces.
 - Starting node is the whole space.

$$E_{start} = \{0,1\}^n.$$



- Idea: embed structure into the computation.
- Memorize subspace where s lives in nodes.

- Associate nodes with affine subspaces.
 - Starting node is the whole space.

$$E_{start} = \{0,1\}^n.$$



• Edge (u, v) for input (a, b),

Restricts s to a smaller subspace.

$$E_{\mathbf{v}} \supseteq E_{u} \cap \{\mathbf{s} \mid \langle \mathbf{a}, \mathbf{s} \rangle = b\}$$

Step 1, easy-ish

Any **Affine Branching Program** that Learns Parity using *small width* **needs** an exponential number of samples

Step 1, easy-ish

Any **Affine Branching Program** that Learns Parity using *small width* **needs** an exponential number of samples

Main Idea: Subspace in output node must have large dimension.

Step 1, easy-ish

Any **Affine Branching Program** that Learns Parity using *small width* **needs** an exponential number of samples

Main Idea: Subspace in output node must have **large** dimension. \implies Outputs **s** with **exponentially small probability**.

Step 1, easy-ish

Any **Affine Branching Program** that Learns Parity using *small width* **needs** an exponential number of samples

Main Idea: Subspace in output node must have large dimension. \implies Outputs **s** with **exponentially small probability**.

Step 2, much harder

Any Branching Program can be simulated by an Affine Branching Program.

(日)

Main Theorem ([Raz, FOCS'16], informal)

Any algorithm that learns parity either:

 $\bullet~{\sf Uses}\sim n^2$ memory,

OR

• Uses an exponential number of samples.

Follow-up works: ([Kol-Raz-Tal, STOC'17], [Raz, FOCS'17], [Garg-Raz-Tal, STOC'18]...)

- Generalize lower-bound for larger class of problems
 - Sparse parities
 - Low-degree equations...

Main Theorem ([Raz, FOCS'16], informal)

Any algorithm that learns parity either:

• Uses $\sim n^2$ memory,

OR

• Uses an exponential number of samples.

Follow-up works: ([Kol-Raz-Tal, STOC'17], [Raz, FOCS'17], [Garg-Raz-Tal, STOC'18]...)

- Generalize lower-bound for larger class of problems
 - Sparse parities
 - Low-degree equations...

Thank you for your attention

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?