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Learning Parity

A secret vector s = (s1, . . . , sn) ∈ {0, 1}n.

〈x, y〉 =
∑n

i=1 xiyi mod 2

a, 〈a, s〉

a←R {0, 1}n

s
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Learning Parity: Two strategies

A secret vector s = (s1, . . . , sn) ∈ {0, 1}n.

a, 〈a, s〉

s

With large memory:

Gather n vectors a into an invertible A,

−→ obtain (A,A · s)
Then use Gaussian Elimination:

−→∼ n samples and n2 memory

With a lot of samples:

Wait for a sample a = (1, 0, . . . , 0);

read s1 = 〈a, s〉.

−→∼ n · 2n samples and n memory
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Time-Memory Tradeoff for Learning Parity

Those are the only two strategies!

Main Theorem ([Raz, FOCS’16] , informal)

Any algorithm that learns parity either:

Uses ∼ n2 memory,

OR

Uses an exponential number of samples.

Proof?

Need a computational model for bounded memory.
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Those are the only two strategies!

Main Theorem ([Raz, FOCS’16] )

For all c < 1/20, there exists an α > 0 such that
any program using

≤ 2αn samples

≤ cn2 memory

only succeeds with probability ≤ O(2−αn).

Proof?

Need a computational model for bounded memory.
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Branching Programs

Input: x1 x2 x1

output 0

output 1 width = 3

Level: 1 2 3

length = 3

A B

C

(a, 0)

(a, 1)

input transition
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Branching Programs

Input: x (1) = (a1, 0)

Input: x (1) x (2) x (3)

output 0

output 1

Level: 1 2 3

A B

C

(a, 0)

(a, 1)

input transition
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Branching Programs

Input: x (1) = (a1, 0)

Input: (a1, 0) x (2) x (3)

output 0

output 1

Level: 1 2 3

A B

C

(a, 0)

(a, 1)

input transition
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Branching Programs

Input: x (2) = (a2, 1)

Input: (a1, 0) (a2, 1) x (3)

output 0

output 1

Level: 1 2 3

A B

C

(a, 0)

(a, 1)

input transition
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Branching Programs

Input: x (3) = (a3, 0)

Input: (a1, 0) (a2, 1) (a3, 0)

output 0

output 1

Level: 1 2 3

A B

C

(a, 0)

(a, 1)

input transition
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Affine Branching Programs

Idea: embed structure into the computation.

Memorize subspace where s lives in nodes.

Associate nodes with affine subspaces.

Starting node is the whole space.

Estart = {0, 1}n.

Edge (u, v) for input (a, b),

Restricts s to a smaller subspace.

Ev ⊇ Eu ∩ {s | 〈a, s〉 = b}
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Proof Outline

The proof goes in two steps:

Step 1, easy-ish

Any Affine Branching Program that Learns Parity using small width
needs an exponential number of samples

Main Idea: Subspace in output node must have large dimension.

=⇒ Outputs s with exponentially small probability.

Step 2, much harder

Any Branching Program can be simulated by an Affine Branching
Program.
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Summary

Main Theorem ([Raz, FOCS’16], informal)

Any algorithm that learns parity either:

Uses ∼ n2 memory,

OR

Uses an exponential number of samples.

Follow-up works: ([Kol-Raz-Tal, STOC’17], [Raz, FOCS’17],
[Garg-Raz-Tal, STOC’18]...)

Generalize lower-bound for larger class of problems
Sparse parities
Low-degree equations...
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Thank you for your attention


